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Abstract

Continuous Human Activity Recognition (HAR) is an impor-
tant application of smart mobile/wearable systems for provid-
ing dynamic assistance to users. However, HAR in real-time
requires continuous sampling of data using built-in sensors
(e.g., accelerometer), which significantly increases the energy
cost and shortens the operating span. Reducing sampling rate
can save energy but causes low recognition accuracy. There-
fore, choosing adaptive sampling frequency that balances ac-
curacy and energy efficiency becomes a critical problem in
HAR. In this paper, we formalize the problem as minimiz-
ing both classification error and energy cost by choosing dy-
namically appropriate sampling rates. We propose Datum-
Wise Frequency Selection (DWFS) to solve the problem via a
continuous state Markov Decision Process (MDP). A policy
function is learned from the MDP, which selects the best fre-
quency for sampling an incoming data entity by exploiting a
datum related state of the system. We propose a method for
alternative learning the parameters of an activity classification
model and the MDP that improves both the accuracy and the
energy efficiency. We evaluate DWFS with three real-world
HAR datasets, and the results show that DWFS statistically
outperforms the state-of-the-arts regarding a combined mea-
surement of accuracy and energy efficiency.

1 Introduction
The task of Human Activity Recognition (HAR) is to rec-
ognize an individual’s daily activities, such as walking, run-
ning and cycling. Due to the rapid development of ubiqui-
tous computing technology, there is a huge demand for ap-
plying HAR on mobile/wearable devices that facilitate the
understanding of a user’s behaviors and provide assistance
to the user (Lockhart, Pulickal, and Weiss 2012). However,
HAR in real-time requires continuous sampling data using
built-in sensors (e.g., accelerometer, microphone, and cam-
era), which causes excessive power consumption that greatly
shortens the lifespan of the mobile devices (Khan et al.
2016). Simply using a low sampling frequency can save en-
ergy, but this comes at the cost of reduced recognition accu-
racy (Krause et al. 2005). Therefore, dynamically selecting
proper sampling frequency to balance accuracy and energy
efficiency becomes an emergent challenge for HAR on re-
source constrained mobile devices.
Copyright © 2018, Association for the Advancement of Artificial
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Most of the existing HAR methods use a fixed sampling
frequency for data acquisition. A problem of these methods
is that, they can either spend redundant energy for identi-
fying highly discriminable instances, or obtain unsatisfac-
tory accuracy for confusing instances. Several works have
been proposed for seeking dynamic sampling frequency
for HAR (Wang et al. 2010; Yan et al. 2012; Yurur et al.
2015). An A3R method (Yan et al. 2012) follows a table
of heuristic rules for frequency selection, and it decides to
switch frequency based on a predefined threshold of pre-
diction probability. Some other methods (Wang et al. 2010;
Yurur et al. 2015) solve the problem with a discrete state
Markov Decision Process (MDP), which merely takes one
of the predefined user states as input and returns limited ac-
tions (increase/keep/decrease) for changing the frequency.
These methods lack direct information extraction from data
sample and cannot find a desired optimal performance on
balancing accuracy and energy efficiency.

In this paper, we propose an effective method that dynam-
ically chooses sampling frequencies for HAR. In contrast
to the existing approaches, our method directly exploits the
information from recently observed data instances. Given a
sequence of data entities, our goal is to dynamically choose
frequencies to sample each data entity for inference, so that
the recognition accuracy and the energy efficiency are bal-
anced in a desired way. We formalize the problem as finding
an optimal classification model and dynamically appropriate
sampling frequencies that minimize an objective function re-
garding overall classification error and total energy cost. We
propose Datum-Wise Frequency Selection (DWFS) to ad-
dress the minimization problem through an MDP, where a
policy function is learned for choosing the best sampling
frequency based on a continuous state. We assign the pol-
icy function with the datum-wise property, where the fea-
ture representation of sampled data is utilized to build a
connection between MDP states and sampling frequencies.
DWFS models a mutual relationship between the classifica-
tion model and the MDP, thereby, we propose to learn their
parameters via an alternative optimization approach. More
specifically, our main contributions can be summarized as
follows:

• We formalize a problem which finds an optimal classifi-
cation model and dynamically appropriate sampling fre-
quencies to minimize an objective function regarding a



combined measurement of classification error and energy
cost.

• We propose DWFS to solve the minimization problem.
DWFS utilizes a continuous state MDP, where a datum-
wise policy function is proposed to select the best sam-
pling frequency by directly exploiting the information
from recently sampled data.

• DWFS unifies the parameters of the classification model
and the policy function in one model, thereafter, we pro-
pose an alternative optimization approach where the pa-
rameters are mutually enhanced.

We conduct extensive experiments on 3 real-world HAR
datasets to evaluate DWFS. The results demonstrate that
DWFS statistically outperforms the state-of-the-arts in terms
of a combined measurement of accuracy and energy effi-
ciency.

2 Related Works
Human Activity Recognition (HAR) has been widely inves-
tigated as an important topic of artificial intelligence (Ravi et
al. 2005; Plötz, Hammerla, and Olivier 2011; Liu et al. 2015;
Yang et al. 2015; Hammerla, Halloran, and Plötz 2016;
Liu et al. 2016). Recently, the pervasive ubiquitous com-
puting prompts a large number of mobile based HAR ap-
plications (Lockhart, Pulickal, and Weiss 2012). A signifi-
cant problem for HAR on such resource constraint devices
is to deal with the trade-off between recognition accuracy
and power consumption. Krause et al. (2005) discovered that
a high sensing sampling frequency will improve the recog-
nition accuracy, but shorten the battery life of a device. A
number of HAR systems, such as ‘SeeMon’ (Kang et al.
2008), ‘EEMSS’ (Wang et al. 2009), and ‘Jigsaw’ (Lu et
al. 2010), obtain energy-efficiency by scheduling the usages
of a specific set of sensors, which are not applicable to uni-
versal platforms. Khan et al. (2016) proposed to find a mini-
mal sampling rate that perverse a certain accuracy. However,
these methods of using fixed sampling rate are not adaptive,
so that they can cause low performance of either accuracy or
energy efficiency. Yan et al. (2012) and Qi et al. (2013) fo-
cused on finding energy-efficient features and sampling rate
for each activity during training, and proposed to adaptively
change sensor sampling rate based on detected activity and
predefined thresholds. However, their methods are heuristic
that cannot achieve a dynamic optimal.

Markov Decision Process (MDP) is a framework success-
fully applied to solve dynamic problems (Hoey et al. 2010;
Puterman 2014; Zhang and Shah 2014; Gilbert et al. 2015;
Yadav et al. 2016; Fang, Li, and Cohn 2017). Several works
especially focus on cost sensitive dynamic problems via
MDP. Trapeznikov and Saligrama (2013) proposed an MDP
based stage-wise decision method which selects a number
of sensors for sequential classification under budgets con-
straint. Dulac-Arnold et al. (2011) proposed a datum-wise
feature selection technique using an MDP, where the fea-
tures of a data point are dynamically selected under dimen-
sion sparsity constraint. MDP is also applied in the field
of energy-efficient sensing. Wang et al. (2010) proposed a
method that obtains Markov-optimal sensing policy for user

state estimation. Yurur et al. (2015) extended the work of
Wang et al. and considered the trend of user preferences to
regulates sensor sampling settings. However, these methods
only utilize predefined user state to determine the next sens-
ing policy, where the beneficial information from data sam-
ples is not exploited.

3 Methodology
In this section, we first formalize the problem of balancing
recognition accuracy and energy efficiency as minimizing
an objective function regarding recognition error and energy
cost. Then, we propose Datum-Wise Frequency Selection
(DWFS) based on a continuous state MDP, which can se-
quentially choose the optimal sensor sampling frequencies
for incoming data entities.

3.1 Problem Statement
Let F = {f1, f2, ..., fK} be a set of K sampling frequencies
supported by a sensor, where f1 < f2 < ... < fK . The energy
costs of using these frequencies are cf1 , cf2 , ..., cfK , respec-
tively, and we have cf1 < cf2 < ... < cfK . Let x be a data
entity with a corresponding activity label y ∈ {1,2, ...,m},
where m is the number of the activities. Since a data entity
x represents an activity in the space of infinite dimension,
it cannot be used without been sampled by a sensor. We de-
fine a sampling function g(x, f) which returns an observed
data instance x̃ = g(x, f) by sampling x with a frequency
f ∈ F . It is worth noting that f is implicitly represented by
x̃ for simplicity of notation. Given an x̃, we can use a classi-
fication model parameterized by θ to infer x̃, then the model
outputs a vector of label probabilities p ∈ [0,1]m for the m
activities:

p = (p1, p2, ..., pm), (1)

where the y-th element py of p is the probability of the ac-
tivity y:

py = p(y ∣ x̃ ; θ). (2)

Suppose there is a sequence of labeled data entities Q =
{(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))}. Our goal is
twofold: 1) we want to find an optimal θ for the classification
model, and 2) for each data entity x(t), we want to select a
proper frequency f (t) ∈ F to obtain x̃(t) = g(x(t), f (t)),
that a combined measurement of the overall classification
error and the total energy cost is minimized:

min
θ,f(1),...,f(N)

N

∑
t=1

1{ŷ(t) ≠ y(t)} + λ
N

∑
t=1
cf(t) , (3)

where ŷ(t) = argmaxy p(y ∣ x̃
(t) ; θ) is the predicted label of

x̃(t), and λ is a predefined weight parameter between the
error and the cost. We denote this combined measurement
as Error-Cost Index. For the convenience of using function
optimization to reduce the proposed Error-Cost Index, we
replace the classification error 1{ŷ(t) ≠ y(t)} in Eq. 3 with
cross-entropy loss, and formalize an objective function as:

min
θ,f(1),...,f(N)

N

∑
t=1

− log p(y(t) ∣ x̃(t) ; θ) + λ
N

∑
t=1
cf(t) , (4)



where λ is a predefined weight parameter between the cross-
entropy loss and the energy cost. In an experimental envi-
ronment, one can naively test all the possible sampling fre-
quencies for each data entity to obtain the optimum solution.
However, this is infeasible for real-time testing, since a sen-
sor can only sample an incoming entity once. Therefore, we
need to find an effective way to solve the problem.

3.2 Datum-Wise Frequency Selection (DWFS)
We propose DWFS to solve the optimization problem of Eq.
4. DWFS effectively predicts the best sampling frequency
for an incoming data entity based on recent context. A sig-
nificant advantage of DWFS over the existing methods is
that, it models a direct connection from data to sampling fre-
quencies, thus the model is so called Datum-Wise. DWFS
solves the minimization problem of Eq. 4 by incorporating
a continuous state MDP, where a policy π is learned to se-
lect the next sampling frequency based on the current state
of the MDP. A state of the MDP is described by a pair of the
feature representation of a previously sampled data instance
and the prediction probabilities of this instance. The detailed
description of DWFS is provided in the rest of this section.
We first define our continuous state MDP, and transform the
original problem into the MDP problem. We then design the
policy of the MDP. Next, we introduce an alternative learn-
ing approach to optimize the parameters of DWFS. Finally,
we describe the algorithm of DWFS to select the sampling
frequencies in real-time testing.

The Markov Decision Process of DWFS Let φ(x̃) ∈ Rd
be the feature representation of x̃ = g(x, f), where d is
the dimension of φ(x̃). We introduce the MDP to solve our
problem as follows:

• S is an infinite space of states. Each state s ∈ S is defined
as a vector s = (φ(x̃),p) ∈ Rd+m, which is concatenated
by the feature representation φ(x̃) and the label probabil-
ities p of x̃. Specifically, we define s(t) = (φ(x̃(t)),p(t)),
where p(t) is the label probabilities of x̃(t).

• A is a set of actions that A = {a1, a2, ..., aK}. The action
ak ∈ A maps to the frequency fk ∈ F , which indicates the
choice of fk. We can consider that ak ≡ fk.

• Psa(s′) is the transition probability function. Given a
state s ∈ S and an action a ∈ A, Psa(s′) returns the prob-
ability of the next state s′ by taking the action a.

• γ is the discount factor. We set γ = 1 as for no discount
involved, thereby every incoming data entity can be con-
sidered equally.

• R(s): S ↦ R is the reward function. It represents a valu-
able rewarded by visiting a state s = (φ(x̃),p). We define
the reward function for our problem as:

R(s) = log p(y ∣ g(x, f) ; θ) − λcf , (5)

where f ∈ F is the frequency used to sample x. Particu-
larly, we define R(0) = 0, where 0 is a zero vector.

The dynamics of the MDP proceeds as follows: We start at
an initial state s(0) = 0. We then choose the first action a(0),

s(0) s(1) ... s(N) End

x̃(1) ... x̃(N)

a(0) a(1) a(N−1)

Figure 1: The dynamics of the MDP.

and use the corresponding sampling frequency f (1) to sam-
ple the first data entity x(1). As the result of f (1), we step
into the next state s(1) = (φ(x̃(1)),p(1)). We then choose
the second action a(1) based on s(1) and obtain a new state.
We repeat this procedure until the last data entity x(N) is
sampled. An intuitive representation of the MDP dynamics
is shown in Figure 1, and the total reward of visiting the state
sequence s(0), s(1), ..., s(N) is calculated as:

R(s(0)) + γR(s(1)) + γ2R(s(2)) + ... + γNR(s(N))

=R(s(0)) +
N

∑
t=1
R(s(t)). (6)

The essential problem of MDP is to find a policy function
π ∶ S ↦ A, which chooses the best action for a given state to
maximize a value function defined as:

V (s, t) = {R(s) + ∫s′∈S Psa(s′)V (s′, t + 1) t < N
R(s) t = N .

(7)
By incorporating the MDP, we can rewrite the problem of
Eq. 4 as:

min
θ,f(1),...,f(N)

N

∑
t=1

− log p(y(t) ∣ x̃(t) ; θ) + λ
N

∑
t=1
cf(t)

= min
θ,f(1),...,f(N)

N

∑
t=1

− log p(y(t) ∣ x̃(t) ; θ) + λcf(t)

= max
θ,f(1),...,f(N)

N

∑
t=1

log p(y(t) ∣ x̃(t) ; θ) − λcf(t)

=max
θ,π

R(s(0)) +
N

∑
t=1
R(s(t))

=max
θ,π

V (s(0),0). (8)

Therefore, our goal is to find optimal classification param-
eter θ∗ and policy π∗ that maximize the value function
V (s(0),0).

Modeling the Policy Suppose we have a fixed θ. Let
V ∗(s, t) be the optimal value function regarding π∗. For
t = N , we have V ∗(s, t) = R(s). For t < N , we can use
Bellman’s equation to recursively calculate V ∗(s, t) as:

V ∗(s, t) = R(s) +max
a∈A ∫s′∈S

Psa(s′)V ∗(s′, t + 1), (9)

where the optimal values of V ∗ for each state are obtained
in a dynamic programming manner. Correspond to V ∗, the
optimal policy function π∗ regarding s is calculated as:

π∗(s) = argmax
a∈A

Et∼T ∫
s′∈S

Psa(s′)V ∗(s′, t), (10)



where T is a distribution of t. Since π∗(s) is independent
of t, the output of π∗(s) given s should be maximized on
T . As the state s = (φ(x̃),p) is in a continuous space, we
are unable to use the traditional tabular approach to obtain
π(s). Instead, we stimulate π(s) with a probabilistic model
p(a ∣s ; ψ) parameterized by ψ:

π(s) = argmax
a∈A

p(a ∣s ; ψ). (11)

We consider the parameter ψ = ψ(s) as a function of s.
The probability p(a ∣s ; ψ) is then given through a softmax
assignment based on ψ(s):

p(a = ak ∣s ; ψ) =
eψk(s)

∑Ki=1 eψi(s)
. (12)

Therefore, we can learn the parameter ψ to obtain the policy
π(s) of the MDP, and our problem of Eq. 8 is then rewritten
as:

max
θ,ψ

V (s(0),0). (13)

Learning DWFS Learning DWFS consists of two tasks:
optimizing the parameter θ for the classification model and
optimizing the parameter ψ for the MDP. We consider that
θ and ψ are affected by each other, and can be mutually
enhanced. It is clear that ψ can be refined based on θ, as
the MDP reward R(s) is a function of θ. The problem is
how to refine θ based on ψ. We propose to use the results
of the MDP to regulate the sample weights for learning
θ. Given a ψ and a training sequence Q, we can use the
MDP to predict a sequence of frequencies {f (1), ..., f (N)},
one for each data entity x(t). We assign a high weight to
g(x(t), f (t)) for learning θ, so that θ can put more emphasis
on the instances sampled by the chosen frequencies, which
improves the classification accuracy. Thereafter, θ can be re-
fined based on ψ. We propose an alternative learning ap-
proach to optimize θ and ψ. Suppose we have a set of train-
ing sequences {Q0, Q1, ..., Qn}. At the beginning, we use
Q0 to learn an initial θ by:

min
θ

∑
(x,y)∈Q0

∑
f∈F

− log p(y ∣ g(x, f) ; θ), (14)

where all the sampled data instances are considered equally.
Given a sequence Q iteratively picked from {Q1, ..., Qn},
we fix θ, and extract a set of state-action pairs H from Q
based on Eq. 10. Each pair (s, a) ∈H is used as an instance
for learning the MDP, thereby, the parameter ψ is optimized
as:

min
ψ

∑
(s,a)∈H

− log p(a ∣s ; ψ). (15)

We then fix ψ, and use the MDP to predictQ, that a sequence
of chosen frequencies {f (1), ..., f (N)} is obtained. Let µx,f

be the weight of the instance g(x, f), and we optimize θ as:

min
θ

∑
(x,y)∈Q

∑
f∈F

−µx,f log p(y ∣ g(x, f) ; θ), (16)

with µx,f = β, if x = x(t) and f = f (t),
µx,f = 1, otherwise,

Algorithm 1 DWFS Generate H

Input: A sequence of training entities Q = {(x(1), y(1)),
(x(2), y(2)), ..., (x(N), y(N))}

Output: A set of state-action pairs H
1: while t = N,N − 1, ...,1 do
2: for k = 1,2, ...,K do
3: x̃

(t)
k = g(x(t), fk)

4: s
(t)
k = (φ(x̃(t)k ),p(t)k )

5: if t == N then
6: V (s(t)k ) = R(s(t)k )
7: else
8: V (s(t)k ) = R(s(t)k ) +max1≤k′≤K V (s(t+1)k′ )
9: end if

10: end for
11: end while
12: H = ∅
13: while t = 1,2, ...,N − 1 do
14: for k = 1,2, ...,K do
15: k′ = argmax1≤k′′≤KV (s(t+1)k′′ )
16: H =H ⋃{(s(t)k , ak′)}
17: end for
18: end while
19: return H

where β > 1 is a predefined parameter for imposing the
weight. Accordingly, we alternately optimize θ and ψ until
the training set has been iterated for L rounds. Before con-
cluding the entire DWFS learning algorithm, we first pro-
vide the algorithm for obtaining the state-action pairs set H .
Based on the general framework of Eq. 10, we iteratively
calculate the optimal V ∗(s, t) from t = N to 1, then we col-
lect a number of K state-action pairs for each t from t = 1 to
N − 1. Let x̃(t)k be the t-th instance x̃(t) sampled by the fre-
quency fk that x̃(t)k = g(x(t), fk). Let p(t)k be the probabili-
ties of x̃(t)k , and s

(t)
k = (φ(x̃(t)k ),p(t)k ). We set the transition

probability function Psa(s′) as:

Psa(s′) = {1, s = s
(t)
k , a = ak′ ,s′ = s

(t+1)
k′ ,

0, otherwise.
(17)

Therefore, the state s
(t)
k only transits to s

(t+1)
k′ by taking the

action ak′ , which indicates to use fk′ for sampling the next
entity x(t+1). The pseudocode of H generating algorithm
is provided in Algorithm 1. Up to now, we can conclude
the DWFS learning algorithm, where the pseudocode is pro-
vided in Algorithm 2.

DWFS Inference Algorithm After learning the parame-
ter θ∗ of the classification model and the parameter ψ∗ of
the policy function π∗(s), we can use the DWFS inference
algorithm to select frequencies on a testing sequence. We
start at an initial state s(0) = 0. For an incoming data entity
x(t), we obtain the frequency via the policy as:

f (t) = a(t−1) = π∗(s(t−1)). (18)



Algorithm 2 DWFS Learning
Input: A set of training sequences {Q0,Q1, ...,Qn}
Output: Parameters θ and ψ

1: Initialize θ, ψ
2: Learn θ by Eq. 14 using Q0

3: for l = 1,2, ..., L do
4: for Q ∈ {Q1, ...,Qn} do
5: Fix θ, update ψ by Eq. 15 using Q
6: Fix ψ, update θ by Eq. 16 using Q
7: end for
8: end for
9: return θ, ψ

Algorithm 3 DWFS Inference

Input: A sequence of data entities x(1),x(2), ...,x(N) ▷
N can be an arbitrary number or infinity.

Output: A sequence of predicted labels ŷ(1), ŷ(2), ..., ŷ(N)

1: s(0) = 0
2: while t = 1,2, ...,N do
3: a(t−1) = π∗(s(t−1))
4: Choose f (t) corresponding to a(t−1)

5: x̃(t) = g(x(t), f (t))
6: ŷ(t) = argmaxy p(y ∣ x̃

(t) ; θ∗)
7: s(t) = (φ(x̃(t)),p(t))
8: end while
9: return ŷ(1), ŷ(2), ..., ŷ(N)

We then change the sampling frequency of the sensor to f (t),
and the sensor will sample out an observed data instance
x̃(t) = g(x(t); f (t)). We use the classification model with
θ∗ to predict the activity label ŷ(t) for x̃(t):

ŷ(t) = argmax
y

p(y ∣ x̃(t) ; θ∗). (19)

We obtain the current state as s(t) = (φ(x̃(t)),p(t)), which
will be used to predict the frequency for the next data entity
x(t+1). We provide the pseudocode of the DWFS inference
algorithm in Algorithm 3. It is worth noting that the length
N of the testing sequence can be an arbitrary number or in-
finity, therefore, DWFS is capable to be applied in real-world
scenarios.

4 Empirical Evaluation
In this section, we evaluate the performance of DWFS in
terms of recognition accuracy, energy cost and the Error-
Cost Index as shown in Eq. 3. The experimental scripts are
written in Python 2.7 on a 64-bit Ubuntu 14.04 LTS operat-
ing system.
Datasets: We use the 3-axis acceleration data of 3 real-
world HAR datasets to evaluate the performance of DWFS.
1) Human Activity Sensing Consortium (HASC) 2011
(Kawaguchi et al. 2011): The data of 6 activities was col-
lected with 100 readings per second by 7 subjects us-
ing iPhone/iPod. 2) Human Activity Recognition on Smart-
phones Dataset (HARSD) (Anguita et al. 2013): The data of

6 activities was collected with 50 readings per second by 30
subjects using a Samsung Galaxy S II. 3) Daily Sport Activ-
ities dataset (DSA) (Barshan and Yüksek 2013): The data of
19 activities was collected with 25 readings per second by 8
subjects using body-worn sensors (we use the data collected
by the sensor placed on a subject’s torso).
Data Preparation: Let D be a dataset containing a num-
ber of time series data. We conduct the experiments based
on 5-fold cross-validation, where we take 1/5 of D in turn
for testing, and the other 4/5 of D for training. For each
training time series data, we divide it into several 5 seconds
time series segments without overlapping, that each segment
is considered as a data entity x paired with a label y. We
preserve the order of the segments to generate a sequence
Q = {(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))}. Accord-
ingly, we obtain a set of training sequences. We randomly
concatenate all the testing time series into one time series,
and transform it into a testing sequence following the same
way of processing training data. We particularly denote N
as the length of the testing sequence for the rest of the paper.
The experimental results are reported as the average results
of the 5 folds.
Experiment Settings: The frequencies F used for each
dataset are set as follows: 1) HASC: 5Hz, 16Hz, 50Hz,
100Hz; 2) HARSD: 2Hz, 5Hz, 16Hz, 50Hz; 3) DSA: 2Hz,
5Hz, 16Hz, 25Hz. The highest frequency in F equals
to the frequency used to collect the dataset. Given F =
{f1, f2, ..., fK}, for each frequency fk ∈ F , the correspond-
ing energy cost is set as cfk = fk/fK , so that cfk is normal-
ized in the range of (0,1]. The normalization of cfk ensures
the same loss of misclassification and using the highest fre-
quency for a data entity when λ = 1.0. The feature represen-
tation φ(x̃) is set as Fourier coefficients extracted from x̃,
where the coefficients are the intensities of the frequencies
from 0Hz to 2Hz (step-size of 0.1Hz). The activity classifi-
cation model takes φ(x̃) as input. The iteration round L for
training is set to 5.
Settings of DWFS: We use softmax regression as the clas-
sification model of DWFS, that the parameter θ is an m ×
(d+ 1) matrix including intercepts, and we optimize θ itera-
tively by Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm. We model the parameter ψ as a K × (d +m) matrix,
that ψk(s) = ψk ⋅s, and we optimize ψ iteratively via BFGS
as well. We set the parameter β = 1.2 which is used to im-
pose instance weight.
Settings of Baselines: We test 6 baseline methods in com-
parison with DWFS. The last two baselines are the variants
of DWFS, where we test two different learning approaches
instead of alternative learning. The settings of the baselines
are as following. 1) The method using constant sampling
frequency: We report K results for this method, one for
each frequency. 2) Random: We randomly choose sampling
frequencies. 3) MDP-DS: We implement an MDP process
which takes predicted activity of the most recent instance
as input state (Yurur et al. 2015). 4) RNN: We implement a
Recurrent Neural Network (RNN) based method, where the
architecture of the RNN consists of an LSTM layer with 32-
dim output, a dense layer with K-dim output, and a softmax
layer (Hammerla, Halloran, and Plötz 2016). 5) DWFS-SL



Table 1: Recognition Accuracy versus Energy Cost (Ac-
celerometer). The unit of the energy cost values is Joule per
hour (J/h).

HASC

f 100Hz 50Hz 16Hz 5Hz

Accuracy 88.79 (± 1.84) 88.20 (± 2.10) 84.92 (± 2.93) 71.46 (± 2.78)

Energy 327.42 J/h 81.20 J/h 51.16 J/h 10.62 J/h

HARSD

f 50Hz 16Hz 5Hz 2Hz

Accuracy 81.59 (± 2.21) 81.65 (± 2.32) 78.33 (± 2.56) 73.70 (± 2.82)

Energy 81.20 J/h 51.16 J/h 10.62 J/h 3.01 J/h

DSA

f 25Hz 16Hz 5Hz 2Hz

Accuracy 77.33 (± 3.63) 76.18 (± 4.33) 72.49 (± 3.39) 63.57 (± 3.79)

Energy 55.45 J/h 51.16 J/h 10.62 J/h 3.01 J/h

(Separate Learning): We first learn θ on the entire training
data, and learn ψ based on θ, that there is no dependence of θ
on ψ. 6) DWFS-CVL (Cross-Validation Learning): We learn
θ on the entire training data, and learn ψ via 4-fold cross-
validation on the training data, where 3/4 of the data is used
to learn a temporal θ̃, and ψ is iteratively learned based on θ̃
of each fold.

4.1 Recognition Accuracy versus Energy Cost
We study the recognition accuracy and the energy cost us-
ing different sampling frequencies, where an accelerometer
is utilized as the sensor. Given a dataset, we train K classi-
fiers, one for each frequency in F , where the k-th classifier
is trained with the data instances sampled using the k-th fre-
quency. The recognition accuracy of each classifier is calcu-
lated as #{correct prediction}

N
. The energy cost of each frequency

is derived from (Qi et al. 2013), where the authors provided
a comprehensive list of energy consumptions regarding ac-
celerometer sampling rates. According to the results shown
in Table 1, one can generally obtain a better recognition ac-
curacy with a higher sampling frequency, however, this will
also bring more energy expenditures. Therefore, learning
dynamic sampling frequency that finds a balanced perfor-
mance between accuracy and cost is important for HAR on
resource constrained mobile platforms.

4.2 Evaluating the Performance of DWFS
We compare the performance of DWFS to the 6 baselines
regarding the Error-Cost Index shown in Eq. 3. We test the
methods with various settings of λ from 0.0 to 1.0. For easy
comparison, the final testing results of the Error-Cost In-
dexes are multiplied by 100

N
. The results on datasets: HASC,

HARSD, and DSA, are shown in Table 2. The proposed
DWFS outperforms than other methods for most of the set-
tings of λ from 0.1 to 1.0. For λ = 0, DWFS fails to select the
best frequency, i.e., the highest frequency. Since the energy
cost is not considered when λ = 0, this is out of the scope
of our problem. To statistically compare the performance of
DWFS with the baselines, we conduct the Wilcoxon signed-
ranked test on the results of the 3 datasets. The returned
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Figure 2: The 4 relationships on HASC, HARSD, and DSA
datasets. (a) Classification error with respect to λ. (b) Energy
cost with respect to λ. (c) Classification error with respect to
energy cost. (d) Frequency changing rate with respect to λ.

R+ and R− correspond to the sum of the ranks of the dif-
ferences above and below zero, respectively. The returned
p-value represents the lowest level of significance of a hy-
pothesis that results in rejection. This value allows one to
determine whether two methods have significantly different
performances. According to the results shown in Table 3, the
p-values in comparisons of DWFS with Random, MDP-DS,
RNN, and DWFS-CVL, reject the null hypotheses for the
Error-Cost Index with a level of significance of α = 0.05 on
all the datasets. The p-values in comparisons of DWFS with
DWFS-SL, reject the null hypotheses for the Error-Cost In-
dex with a level of significance of α = 0.05 on HARSD and
DSA datasets.

4.3 Insight Study of DWFS

We further investigate DWFS regarding 4 relationships: 1)
classification error and λ; 2) energy cost and λ; 3) classifica-
tion error and energy cost; 4) frequency changing rate and λ.
The frequency changing rate is defined as #{frequency changes}

N
,

which can be used to reveal the effectiveness of DWFS.
According to the results shown in Figure 2a, 2b, and 2c,
the classification error continuously increases and the en-
ergy cost continuously decreases with respect to λ, due to
the imposed penalty on the energy cost causing sampling
frequencies are dynamically reduced. According to the re-
sults shown in Figure 2d, there is no significant pattern be-
tween frequency changing rate and λ, but we can observe
that DWFS maintains an approximately stable changing rate
between 0.1 and 0.3, which demonstrates the robustness of
DWFS in terms of λ.



Table 2: The Error-Cost Index (i.e., 100
N ∑Nt=1 1{ŷ(t) ≠ y(t)} + λcf(t) ) with respect to λ on HASC, HARSD, and DSA datasets.

HASC

Method λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

100Hz 11.21(±1.84) 21.21(±1.84) 31.21(±1.84) 41.21(±1.84) 51.21(±1.84) 61.21(±1.84) 71.21(±1.84) 81.21(±1.84) 91.21(±1.84) 101.21(±1.84) 111.21(±1.84)
50Hz 11.80(±2.10) 16.80(±2.10) 21.80(±2.10) 26.80(±2.10) 31.80(±2.10) 36.80(±2.10) 41.80(±2.10) 46.80(±2.10) 51.80(±2.10) 56.80(±2.10) 61.80(±2.10)
16Hz 15.08(±2.93) 16.68(±2.93) 18.28(±2.93) 19.88(±2.93) 21.48(±2.93) 23.08(±2.93) 24.68(±2.93) 26.28(±2.93) 27.88(±2.93) 29.48(±2.93) 31.08(±2.93)
5Hz 28.54(±2.78) 29.04(±2.78) 29.54(±2.78) 30.04(±2.78) 30.54(±2.78) 31.04(±2.78) 31.54(±2.78) 32.04(±2.78) 32.54(±2.78) 33.04(±2.78) 33.54(±2.78)

Random 16.54(±2.15) 21.14(±2.14) 25.74(±2.12) 30.34(±2.11) 34.94(±2.09) 39.54(±2.08) 44.14(±2.06) 48.74(±2.05) 53.34(±2.04) 57.94(±2.03) 62.54(±2.02)
MDP-DS 13.88(±2.26) 18.85(±3.25) 21.83(±4.07) 23.52(±3.66) 25.14(±3.84) 26.40(±3.49) 27.91(±3.92) 29.39(±3.90) 30.81(±3.92) 32.09(±3.86) 33.23(±3.88)

RNN 12.01(±2.32) 16.74(±3.42) 18.39(±2.96) 20.01(±2.47) 21.32(±3.07) 23.12(±3.42) 24.81(±3.62) 26.38(±3.08) 27.47(±3.35) 28.32(±3.45) 29.87(±2.78)
DWFS-CVL 12.22(±1.71) 18.12(±3.04) 19.88(±3.31) 21.16(±3.07) 22.73(±2.87) 23.72(±2.66) 25.61(±2.34) 27.01(±2.44) 28.33(±1.84) 29.00(±2.20) 30.45(±2.03)
DWFS-SL 11.54(±2.21) 16.30(±2.58) 18.31(±3.03) 19.29(±2.94) 21.08(±3.45) 22.51(±3.63) 23.56(±3.62) 25.56(±3.81) 26.57(±4.06) 27.74(±3.39) 29.01(±3.41)

DWFS 12.07(±2.91) 16.24(±2.67) 17.83(±3.01) 19.54(±2.67) 20.87(±3.69) 22.27(±3.44) 24.17(±3.70) 25.67(±3.10) 26.10(±3.26) 27.38(±3.35) 28.87(±3.12)

HARSD

Method λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

50Hz 18.41(±2.21) 28.41(±2.21) 38.41(±2.21) 48.41(±2.21) 58.41(±2.21) 68.41(±2.21) 78.41(±2.21) 88.41(±2.21) 98.41(±2.21) 108.41(±2.21) 118.41(±2.21)
16Hz 18.35(±2.32) 21.55(±2.32) 24.75(±2.32) 27.95(±2.32) 31.15(±2.32) 34.35(±2.32) 37.55(±2.32) 40.75(±2.32) 43.95(±2.32) 47.15(±2.32) 50.35(±2.32)
5Hz 21.67(±2.56) 22.67(±2.56) 23.67(±2.56) 24.67(±2.56) 25.67(±2.56) 26.67(±2.56) 27.67(±2.56) 28.67(±2.56) 29.67(±2.56) 30.67(±2.56) 31.67(±2.56)
2Hz 26.30(±2.82) 26.70(±2.82) 27.10(±2.82) 27.50(±2.82) 27.90(±2.82) 28.30(±2.82) 28.70(±2.82) 29.10(±2.82) 29.50(±2.82) 29.90(±2.82) 30.30(±2.82)

Random 20.16(±2.93) 24.12(±2.93) 28.09(±2.92) 32.05(±2.92) 36.01(±2.92) 39.97(±2.92) 43.93(±2.92) 47.90(±2.92) 51.86(±2.92) 55.82(±2.92) 59.78(±2.92)
MDP-DS 19.91(±2.16) 22.85(±2.10) 24.45(±2.06) 25.17(±2.18) 26.06(±2.52) 26.87(±2.48) 27.57(±2.60) 28.44(±2.78) 29.27(±2.86) 30.07(±2.87) 31.19(±2.80)

RNN 18.97(±2.41) 22.77(±2.22) 24.45(±2.51) 25.23(±2.71) 25.48(±3.06) 25.99(±2.94) 26.70(±2.76) 27.68(±2.59) 28.73(±3.37) 29.58(±2.61) 30.57(±2.75)
DWFS-CVL 18.86(±2.49) 21.50(±1.91) 23.34(±2.09) 25.15(±2.85) 25.66(±3.13) 26.56(±2.99) 27.71(±3.09) 28.43(±3.07) 28.67(±2.75) 29.15(±3.05) 30.57(±3.01)
DWFS-SL 19.33(±2.47) 22.60(±2.71) 23.44(±2.40) 24.99(±2.66) 25.86(±2.58) 26.44(±2.49) 27.01(±2.66) 27.85(±2.61) 28.64(±2.49) 29.05(±2.31) 30.00(±3.03)

DWFS 18.52(±1.76) 22.19(±2.45) 23.29(±1.93) 23.41(±2.10) 24.33(±2.95) 25.37(±2.26) 26.67(±3.11) 27.20(±2.94) 27.19(±2.37) 27.95(±2.58) 29.53(±2.49)

DSA

Method λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

25Hz 22.67(±3.63) 32.67(±3.63) 42.67(±3.63) 52.67(±3.63) 62.67(±3.63) 72.67(±3.63) 82.67(±3.63) 92.67(±3.63) 102.67(±3.63) 112.67(±3.63) 122.67(±3.63)
10Hz 23.82(±4.33) 27.82(±4.33) 31.82(±4.33) 35.82(±4.33) 39.82(±4.33) 43.82(±4.33) 47.82(±4.33) 51.82(±4.33) 55.82(±4.33) 59.82(±4.33) 63.82(±4.33)
5Hz 27.51(±3.39) 29.51(±3.39) 31.51(±3.39) 33.51(±3.39) 35.51(±3.39) 37.51(±3.39) 39.51(±3.39) 41.51(±3.39) 43.51(±3.39) 45.51(±3.39) 47.51(±3.39)
2Hz 36.43(±3.79) 37.23(±3.79) 38.03(±3.79) 38.83(±3.79) 39.63(±3.79) 40.43(±3.79) 41.23(±3.79) 42.03(±3.79) 42.83(±3.79) 43.63(±3.79) 44.43(±3.79)

Random 30.26(±3.46) 34.55(±3.46) 38.85(±3.46) 43.14(±3.46) 47.43(±3.46) 51.72(±3.46) 56.01(±3.46) 60.30(±3.46) 64.60(±3.46) 68.89(±3.46) 73.18(±3.46)
MDP-DS 24.78(±3.85) 29.19(±3.86) 31.72(±3.94) 33.97(±3.72) 35.98(±3.62) 37.91(±3.56) 39.79(±3.56) 41.46(±3.51) 43.00(±3.51) 44.54(±3.45) 45.86(±3.48)

RNN 23.26(±3.60) 29.04(±3.81) 31.15(±3.61) 32.53(±3.97) 33.93(±3.63) 35.29(±3.89) 36.58(±3.45) 38.27(±3.99) 39.40(±3.40) 40.53(±3.37) 42.19(±4.00)
DWFS-CVL 26.04(±3.84) 29.94(±3.21) 32.16(±2.97) 34.05(±3.06) 35.89(±3.15) 37.35(±3.42) 38.79(±3.29) 40.25(±3.50) 41.82(±3.37) 42.70(±3.29) 44.21(±3.49)
DWFS-SL 23.53(±3.88) 27.66(±3.69) 29.78(±3.63) 31.74(±3.38) 33.45(±3.52) 34.89(±3.39) 36.54(±3.42) 37.84(±3.59) 39.04(±3.46) 40.18(±3.50) 41.64(±3.45)

DWFS 23.50(±3.77) 27.30(±3.25) 29.58(±3.06) 31.15(±3.29) 33.29(±2.78) 34.87(±2.90) 36.14(±3.23) 37.40(±3.28) 38.96(±3.26) 39.92(±3.44) 41.41(±3.30)

Table 3: The Wilcoxon test to compare the Error-Cost Indexes of DWFS, DWFS-CVL, DWFS-SL, RNN, MDP-DS, and Ran-
dom regarding R+, R−, and p-values.

DWFS vs. Random DWFS vs. MDP-DS DWFS vs. RNN DWFS vs. MDP-CVL DWFS vs. DWFS-SL
Dataset R+ R− p-value R+ R− p-value R+ R− p-value R+ R− p-value R+ R− p-value
HASC 0.0 1540.0 0.000000 2.0 1538.0 0.000000 288.0 1252.0 0.000054 112.0 1428.0 0.000000 744.5 740.5 0.986261

HARSD 9.0 1531.0 0.000000 110.0 1430.0 0.000000 398.0 1142.0 0.001828 323.0 1162.0 0.000304 212.0 1273.0 0.000005
DSA 0.0 1540.0 0.000000 1.0 1539.0 0.000000 166.0 1374.0 0.000000 0.0 1540.0 0.000000 437.0 1103.0 0.005270

5 Conclusion & Future Work

In this paper, we address an emergent problem of Human
Activity Recognition (HAR) on mobile/wearable platforms,
which is adaptively determining sampling frequencies to
balance recognition accuracy and energy efficiency. We for-
malize the problem as minimizing an objective function re-
garding classification error and energy cost, by finding an
optimal classification model and dynamically appropriate
sampling rates. We propose Datum-Wise Frequency Selec-
tion (DWFS) to solve the problem via a continuous state
Markov Decision Process (MDP). The MDP learns a pol-
icy function that selects the best frequency for sampling an
incoming data entity by exploiting the information of pre-
viously sampled instances. We propose an alternative learn-

ing method, where the parameters of the classification model
and the policy function are mutually enhanced. We evaluate
the performance of DWFS on 3 real-world HAR datasets,
and the results show that DWFS statistically outperforms
the state-of-the-arts regarding a combined measurement of
classification error and energy cost.

In future work, we will investigate using imitation learn-
ing (He, Daume III, and Eisner 2012) as an auxiliary model
for the selection of sampling frequencies, since imitation
learning can handle much complex sensing tasks where the
reward function regarding accuracy and energy cost cannot
be explicitly defined. We will also test our model on vari-
ous smart devices to evaluate the performance in real-world
scenarios.
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